Gallery

Uji Normalitas

Uji normalitas adalah uji yang dilakukan untuk mengecek apakah data penelitian kita berasal dari populasi yang sebarannya normal. Uji ini perlu dilakukan karena semua perhitungan statistik parametrik memiliki asumsi normalitas sebaran. Formula/rumus yang digunakan untuk melakukan suatu uji (t-test misalnya) dibuat dengan mengasumsikan bahwa data yang akan dianalisis berasal dari populasi yang sebarannya normal. Ya bisa ditebak bahwa data yang normal memiliki kekhasan seperti mean, median dan modusnya memiliki nilai yang sama. Selain itu juga data normal memiliki bentuk kurva yang sama, bell curve. Nah dengan mengasumsikan bahwa data dalam bentuk normal ini, analisis statistik baru bisa dilakukan.

ü  Ada beberapa cara melakukan uji asumsi normalitas ini yaitu menggunakan analisis Chi Square dan Kolmogorov-Smirnov. Bagaimana analisisnya untuk sementara kita serahkan pada program analisis statistik seperti SPSS dulu ya. Tapi pada dasarnya kedua analisis ini dapat diibaratkan seperti ini :
pertama komputer memeriksa data kita, kemudian membuat sebuah data virtual yang sudah dibuat norma

ü  kemudian komputer seolah-olah melakukan uji beda antara data yang kita miliki dengan data virtual yang dibuat normal tadi

ü  dari hasil uji beda tersebut, dapat disimpulkan dua hal :

  • jika p lebih kecil daripada 0,05 maka dapat disimpulkan bahwa data yang kita miliki berbeda secara signifikan dengan data virtual yang normal tadi. Ini berarti data yang kita miliki sebaran datanya tidak normal.
  • jika p lebih besar daripada 0,05 maka dapat disimpulkan bahwa data yang kita miliki tidak berbeda secara signifikan dengan data virtual yang normal. Ini berarti data yang kita miliki sebaran datanya normal juga.

Ukuran inilah yang digunakan untuk menentukan apakah data kita berasal dari populasi yang normal atau tidak.

Data yang tidak normal tidak selalu berasal dari penelitian yang buruk. Data ini mungkin saja terjadi karena ada kejadian yang di luar kebiasaan. Atau memang kondisi datanya memang nggak normal. Misal data inteligensi di sekolah anak-anak berbakat (gifted) jelas tidak akan normal, besar kemungkinannya akan juling positif. Lalu apa yang bisa kita lakukan?

  • Kita perlu ngecek apakah ketidaknormalannya parah nggak. Memang sih nggak ada patokan pasti tentang keparahan ini. Tapi kita bisa mengira-ira jika misalnya nilai p yang didapatkan sebesar 0,049 maka ketidaknormalannya tidak terlalu parah (nilai tersebut hanya sedikit di bawah 0,05). Ada beberapa analisis statistik yang agak kebal dengan kondisi ketidaknormalan ini (disebut memiliki sifat robust), misalnya F-test dan t-test. Jadi kita bisa tetap menggunakan analisis ini jika ketidaknormalannya tidak parah.
  • Kita bisa membuang nilai-nilai yang ekstrem, baik atas atau bawah. Nilai ekstrem ini disebut outliers. Pertama kita perlu membuat grafik, dengan sumbu x sebagai frekuensi dan y sebagai semua nilai yang ada dalam data kita (ini tentunya bisa dikerjakan oleh komputer). Nah dari sini kita akan bisa melihat nilai mana yang sangat jauh dari kelompoknya. Nilai inilah yang kemudian perlu dibuang dari data kita, dengan asumsi nilai ini muncul akibat situasi yang tidak biasanya. Misal responden yang mengisi skala kita dengan sembarang yang membuat nilainya jadi sangat tinggi atau sangat rendah.
  • Tindakan ketiga yang bisa kita lakukan adalah dengan mentransform data kita. Ada banyak cara untuk mentransform data kita, misalnya dengan mencari akar kuadrat dari data kita, dll.
  • Maka langkah terakhir yang bisa kita lakukan adalah dengan menggunakan analisis non-parametrik. Analisis ini disebut juga sebagai analisis yang distribution free. Sayangnya analisis ini seringkali mengubah data kita menjadi data yang lebih rendah tingkatannya.
About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s