Gallery

Deskripsi Analisis Korelasi


Korelasi dan Linearitas

Terdapat hubungan erat antara p engertian korelasi dan linieritas. Korelasi Pearson, misalnya, menunjukkan adanya kekuatan hubungan linier dalam dua variabel. Sekalipun d emikian jika asumsi normalitas salah maka nilai korelasi tidak akan memadai untuk membuktikan adanya hubungan linieritas. Linieritas artinya asumsi adanya hubungan dalam bentuk garis lurus antara variabel. Linearitas antara dua variabel dapat dinilai melalui observasi scatterplots bivariat. Jika kedua variabel berdistribusi normal dan behubungan secara linier, maka  scatterplot berbentuk oval; jika tidak berdistribusi normal scatterplot tidak berbentuk oval.

Dalam praktinya kadang data yang digunakan akan menghasilkan korelasi tinggi tetapi hubungan tidak linier; atau sebaliknya korelasi rendah tetapi hubungan linier. Dengan demikian agar linieritas hubungan dipenuhi, maka data yang digunakan harus mempunyai distribusi normal. Dengan kata lain, koefesien korelasi hanya merupakan statistik ringkasan sehingga tidak dapat digunakan sebagai sarana untuk memeriksa data secara individual.

Asumsi dasar korelasi diantaranya seperti tertera di bawah ini:

  • Kedua variabel bersifat independen satu dengan lainnya, artinya masing-masing variabel berdiri sendiri dan tidak tergantung satu dengan lainnya. Tidak ada istilah variabel bebas dan variabel tergantung.
  • Data untuk kedua variabel berdistribusi normal. Data yang mempunyai distribusi normal artinya data yang distribusinya  simetris sempurna. Jika digunakan bahasa umum disebut berbentuk kurva bel. Menurut Johnston (2004) ciri-ciri data yang mempunyai distribusi normal ialah sebagai berikut:

ü  Kurva frekuensi normal menunjukkan frekuensi tertinggi berada di tengah-tengah, yaitu berada pada rata-rata (mean) nilai distribusi dengan kurva sejajar dan tepat sama pada bagian sisi kiri dan kanannya. Kesimpulannya, nilai yang paling sering muncul dalam distribusi normal ialah rata-rata (average), dengan setengahnya berada dibawah rata-rata dan setengahnya yang lain berada di atas rata-rata.

ü  Kurva normal, sering juga disebut sebagai kurva bel, berbentuk simetris sempurna

ü  Karena  dua bagian sisi dari tengah-tengah benar-benar simetris, maka frekuensi nilai-nilai diatas rata-rata (mean) akan benar-benar cocok dengan frekuensi nilai-nilai di bawah rata-rata

ü  Frekuensi total semua nilai dalam populasi akan berada dalam  area dibawah kurva. Perlu diketahui bahwa area total dibawah kurva mewakili kemungkinan munculnya karakteristik tersebut

ü  Kurva normal dapat mempunyai bentuk yang berbeda-beda. Yang menentukan bentuk-bentuk tersebut adalah nilai rata-rata dan simpangan baku (standard deviation) populasi.

Korelasi mempunyai karakteristik-karakteristik diantaranya:

  1. Kisaran Korelasi: Kisaran (range) korelasi mulai dari 0 sampai dengan 1. Korelasi dapat positif  dan dapat pula negatif.
  2. Korelasi Sama Dengan Nol: Korelasi sama dengan 0 mempunyai arti tidak ada hubungan antara dua variable.
  3. Korelasi Sama Dengan Satu: Korelasi sama dengan + 1 artinya kedua variabel mempunyai hubungan linier sempurna (membentuk garis lurus) positif. Korelasi sempurna seperti ini mempunyai makna jika nilai X naik, maka Y juga naik. Korelasi sama dengan -1 artinya kedua variabel mempunyai hubungan linier sempurna (membentuk garis lurus) negatif. Korelasi sempurna seperti ini mempunyai makna jika nilai X naik, maka Y turun (dan sebaliknya)

Koefesien Korelasi

Koefesien korelasi ialah pengukuran statistik kovarian atau asosiasi antara dua variabel. Besarnya koefesien korelasi berkisar antara +1 s/d -1. Koefesien korelasi menunjukkan kekuatan (strength) hubungan linear dan arah hubungan dua variabel acak. Jika koefesien korelasi positif, maka kedua variabel mempunyai hubungan searah. Artinya jika nilai variabel X tinggi, maka nilai variabel Y akan tinggi pula. Sebaliknya, jika koefesien korelasi negatif, maka kedua variabel mempunyai hubungan terbalik. Artinya jika nilai variabel X tinggi, maka nilai variabel Y akan menjadi rendah (dan sebaliknya). Untuk memudahkan melakukan interpretasi mengenai kekuatan hubungan antara dua variabel penulis memberikan kriteria sebagai berikut:

    • 0 : Tidak ada korelasi antara dua variabel
    • >0 – 0,25: Korelasi sangat lemah
    • >0,25 – 0,5: Korelasi cukup
    • >0,5 – 0,75: Korelasi  kuat
    • >0,75 – 0,99: Korelasi  sangat kuat
    • 1: Korelasi sempurna

Signifikansi

Apa sebenarnya signifikansi itu? Dalam bahasa Inggris umum, kata, “significant” mempunyai makna penting; sedang dalam pengertian statistik kata tersebut mempunyai makna “benar” tidak didasarkan secara kebetulan. Hasil riset dapat benar tapi tidak penting. Signifikansi / probabilitas / α memberikan gambaran mengenai bagaimana hasil riset itu mempunyai kesempatan untuk benar. Jika kita memilih signifikansi sebesar 0,01, maka artinya kita menentukan hasil riset nanti mempunyai kesempatan untuk benar sebesar 99% dan untuk salah sebesar 1%.

Secara umum kita menggunakan angka signifikansi sebesar 0,01; 0,05 dan 0,1. Pertimbangan penggunaan angka tersebut didasarkan pada tingkat kepercayaan (confidence interval) yang diinginkan oleh peneliti. Angka signifikansi sebesar 0,01 mempunyai pengertian bahwa tingkat kepercayaan atau bahasa umumnya keinginan kita untuk memperoleh kebenaran dalam riset kita adalah sebesar 99%. Jika angka signifikansi sebesar 0,05, maka tingkat kepercayaan adalah sebesar 95%. Jika angka signifikansi sebesar 0,1, maka tingkat kepercayaan adalah sebesar 90%.

Pertimbangan lain ialah menyangkut jumlah data (sample) yang akan digunakan dalam riset. Semakin kecil angka signifikansi, maka ukuran sample akan semakin besar. Sebaliknya semakin besar angka signifikansi, maka ukuran sample akan semakin kecil. Unutuk memperoleh angka signifikansi yang baik, biasanya diperlukan ukuran sample yang besar. Sebaliknya jika ukuran sample semakin kecil, maka kemungkinan munculnya kesalahan semakin ada.

Untuk pengujian dalam SPSS digunakan kriteria sebagai berikut:

  • Jika angka signifikansi hasil riset < 0,05, maka hubungan kedua variabel signifikan.
  • Jika angka signifikansi hasil riset > 0,05, maka hubungan kedua variabel tidak signifikan

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s