Gallery

Deskripsi Analisis Regresi Linear Sederhana

Untuk mengetahui gambaran mengenai hubungan antara dua variable digunakan sebaran titik dan estimasi kurva linear yang diperoleh dari pada pergerakan titik yang satu ke titik yang lain. Cara lain untuk mengetahui buhungan antara dua variable, yaitu melalui metode persamaan linear. Bentuk umum persamaan linear sederhana yang menunjukkan hubungan antara dua variable, yaitu variable X sebagai variable independent dan variable Y sebagai variable dependen adalah:

Y = a + bX

Yang menunjukkan bahwa

Y adalah variable dependen

a adalah intersep (titik potong kurva terhadap sumbu Y)

b adalah kemiringan (slope) kurva linear

X adalah variable independen

Persamaan diatas dapat digunakan untuk menaksir nilai Y jika nilai a, b, dan X diketahui. Nilai a pada merupakan nilai Y yang dipotong oleh kurva linear pada sumbu vertical Y. atau dengan kata lain, a adalah nilai Y jika X=0. Nilai b adalah kemiringan (slope) kurva linear yang menunjukkan besarnya perubahan nilai Y sebagai akibat dari perubahan setiap unit nilai X. Besarnya a dan b konstan sepanjang kurva linear.

Persamaan Y= a+bX merupakan model matematis deterministic (deterministic mathematical model), sebab apabila nilai variable X diketahui, maka nilai variable Y dapat ditentukan tanpa mengandung factor kesalahan (error). Persamaan Y= a +bX merupakan persamaan yang akan digunakan untuk menentukan perkiraan nilai Y pada tingkat X tertentu. Karena Y pada persamaan tersebut merupakan nilai perkiraan (taksiran), maka persamaan taksiran sering ditulis dengan symbol:

Ŷ = a + bX

Persamaan ini diperoleh dari sampel sebagai taksiran persamaan populasi: Y = β0 + β1X. nilai Ŷ pada persamaan taksiran merupakan nilai taksiran (perkiraan) Y, a sebagai taksiran β0 dan b sebagai taksiran β1 pada persamaan populasi.

Persamaan berikut ini merupakan model matematis probabilistic atau disebut juga dengan istilah model matematis stokhastik.

Y = a + bX + e

Persamaan Y = a + bX + e merupakan persamaan stokhastik (probabilistic). Karena nilai Y belum dapat diketahui, walaupun nilai variable X tertentu. Hal ini disebabkan karena pada persamaan tersebut masih terdapat factor kesalahan (e). besarnya e (error) dapat ditentukan dengan formulasi sebagai berikut:

e = Y – Ŷ

Persamaan Estimasi dengan Metode Kuadrat Terkecil (Least Square Method)

Untuk menaksir regresi populasi (PRF) atas dasar fungsi regresi sample (SRF) seakurat (setepat) mungkin, ada beberapa metode penyusunan SRF, tetapi sejauh yang menyangkut analisis regresi, metode yang paling luas digunakan adalah metode kuadrat terkecil biasa (OLS). Metode OLS ini dikemukakan oleh Carl Friedrich Gauss, seorang ahli matematik bangsa jerman. Dengan asumsi-asumsi tertentu, metode OLS mempunyai beberapa sifat statistic yang sangat menarik yang membuatnya menjadi satu metode analisis regresi yang paling kuat (powerful) dan popular.

model probabilitas garis Iurus dirumuskan:

Y     “=  bo + b1 x + є

di mana

Y      = variabel dependen (respon)

X      = variabei independen, yang digunakan sebagai penjelas Y

E(Y) = b0 + b1 X = komponen deterministik

є       =  komponen kesalahan random (random error)

bo = intercept, titik potong garis regresi dengan sumbu Y

b1      =  slope, kemiringan garis regresi, yaitu seberapa jauh kenaikan

(penurunan) komponen deterministik dari Y sebagai akibat

kenaikan X.

Tujuan utama regresi adaiah mengestimasi fungsi regresi populasi (FRP) srdasarkan fungsi regresi sampel. Misalkan persamaan regresi populasinya lalah:

E(Y/Xi)= b0 + b1X1

Karena populasi sering tidak dapat diperoleh secara iangsung, maka junakan fungsi regresi sampel (FRS):

Ŷi = b0 + b1 + b2 X1 +… + bkXk

di mana Yi dibaca “Y topi” atau “Y yang diestimasi”, karena Ŷi = penduga E(Y/Xi). Metode OLS bertujuan untuk meminimalkan jumlah kuadrat kesalahan (SSE= Sum of Squares Error).

SEE = Σ(Yi-Ŷi)2

Masalahnya adalah seringkali terjadi penyimpangan antara data observasi (FRP) dan garis regresi sampel. Ini disebabkan oleh: a. Adanya variabel yang dihilangkan b  Sifat acak dari periiaku manusia c. Ketidaksempurnaan model matematis d. Kesalahan akibat penjumlahan (agregatif) e. Kesalahan dalam mengumpulkan/memproses data

Asumsi utama yang mendasari model regresi linear klasik dengan menggunakan metode OLS adalah:

  • Model regresi linear, artinya: linear dalam parameter
  • X diasumslkan nonstokastik, artinya: nilai X dianggap tetap dalam sampel

yang berulang

  • Nilai rata-rata kesalahan adalah nol,
  • Homoskedastisitas, artinya varians kesalahan sama untuk setiap periode (homo=sama; skedastisitas=sebaran)
  • Tidak ada autokorelasi antar kesalahan (antara u dan u. tidak ada korelasinya)
  • Tidak ada multikolinearitas yang sempuma antar variabel bebas
  • Jumlah observasi, n, harus lebih besar daripada  jumlah parameter yang diestimasi (jumlah variabel bebas)
  • Adanya variabilitas dalam nilai X, artinya: nilai X harus berbeda (tidak boleh sama semua)

Menurut Teorema Gauss-Markov, setiap pemikiran/estimator OLS harus memenuhi criteria BLUE, yaitu :

  • Best = yang terbaik
  • Linear = merupakan linear dari data sample,
  • Unbiased = rat-rata atau nilai harapan (E(bi1)) harus sama dengan nilai yang sebenarnya (b1)
  • Efficient estimator = memiliki varians yang minimal diantara pemikiran lain yang tidak bias.

Pemilihan Risiko α untuk Tingkat Signifikansi

Salah satu aspek yang menetukan menerima atau menolak hiotesis nol (H0) bergantung pada tingkat signifikansi (α) yang dipilih. Tingkat signifikansi yang dipilih dalam suatu pengujian hipotesis ditentukan oleh peneliti sendiri. Tingkat signifikansi ini menunjukkan probabilitas menolak hipotesis yang benar.

Dalam pengujian hipotesis, konsentrasi pengujian diarahkan pada probabilitas menolak hipotesis yang benar (risiko α), bukan pada probabilitas menerima hipotesis yang salah risiko B). Hal ini rasional, karena risiko kesalahan menolak hipotesis yang dalam kenyataannya benar (risiko α) relative lebih mahal dibandingkan dengan tidak menolak hipotesis padahal hipotesis tersebut salah (risiko B). Argumentasi klasik dalam pelajaran statistic digunakan contoh seorang hakim dalam mengambil keputusan menggunakan prinsip “lebih baik membebaskan seribu orang yang bersalah daripada memenjarakan satu orang yang sebenarnya tidak bersalah”. Besarnya ririko α dan risiko B terjadi trade-off. Artinya, pada ukuran sampel tertentu, jika si peneliti menurunkan probabilitas menolak hipotesis yang benar (risiko α), maka pada saat itu juga ia meningkatkan probabilitas menerima hipotesis yang salah (risiko B).

Dalam penelitian pada umumnya menggunakan tingkat signifikansi 1%, 5%, atau 10%. Jika dalam suatu pengujian hipotesis menggunakan α = 5%. Artinya, si peneliti memiliki keyakinan bahwa dari 100 anggota sampel, probabilitas anggota sampel yang tidak memiliki karakteristik populasi lebih dari 5 adalah 5%.

Pada prinsipnya pemilihan tingkat signifikansi ini terserah si peneliti. Semakin besar tingkat signifikansinya (α) yang dipilih, semakin besar probabilitas menolak hipotesis yang benar.

Uji Pengaruh Variabel Independen terhadap Variabel Dependen

Pengujian terhadap pengaruh variable independen terhadap variable dependen dilakukan melalui 5 langkah pengujian hipotesis:

  1. Rumusan hipotesis

Ini terdiri dari hipotesis nol (H0) dan hipotesis (H1), dalam pengujian hipotesis, rumusan hipotesis dibangun berdasarkan tujuan pengujian hipotesis tersebut.

  1. Nilai kritis

Nilai kritis ditentukan dengan menggunakan Tabel Distribusi t. penentuan nilai kritis didasarkan pada tingkat signifikansi (α) yang digunakan. Selain signifikansi, penentuan nilai kritis pengujian adalah memperhatikan derajat kebebasan (d.f). besarnya d.f = n – k. n adalah jumlah sampel dan k adalah jumlah variable (dependen dan independen) dalam persamaan.

  1. Menentukan nilai hitung
  2. Keputusan

Dalam tahap pengambilan keputusan ini dibuat grafik polygon distribusi normal dan kemudian ditentukan daerah penerimaan H0 dan daerah penolakan H0. Batas antara daerah penerimaan H0 dan daerah penolakan H0 adalah nilai kritis.

  1. Kesimpulan

Kesimpulan dibuat berdasarkan keputusan yang diambil.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s